direct product, p-group, metabelian, nilpotent (class 2), monomial, rational
Aliases: C2×C22.29C24, C42⋊10C23, C23.16C24, C25.73C22, C22.35C25, C24.478C23, C22.1002+ 1+4, C4⋊C4⋊18C23, (C2×D4)⋊6C23, (C22×C4)⋊42D4, (D4×C23)⋊13C2, C22⋊C4⋊5C23, (C2×C4).38C24, (C2×Q8)⋊16C23, C2.14(D4×C23), C4⋊D4⋊61C22, C4⋊1D4⋊42C22, (C22×C4)⋊14C23, (C23×C4)⋊30C22, (C2×C42)⋊44C22, C4.170(C22×D4), C23.708(C2×D4), C22≀C2⋊26C22, C4.4D4⋊62C22, (C22×D4)⋊30C22, (C22×Q8)⋊58C22, C22.48(C22×D4), C42⋊C2⋊86C22, C2.5(C2×2+ 1+4), (C2×C4)⋊10(C2×D4), (C2×C4⋊D4)⋊54C2, (C2×C4⋊1D4)⋊22C2, (C2×C22≀C2)⋊21C2, (C2×C4⋊C4)⋊127C22, (C2×C4.4D4)⋊45C2, (C2×C4○D4)⋊67C22, (C22×C4○D4)⋊13C2, (C2×C42⋊C2)⋊53C2, (C2×C22⋊C4)⋊40C22, SmallGroup(128,2178)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×C22.29C24
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=f2=g2=1, e2=b, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, bc=cb, ede-1=gdg=bd=db, fef=be=eb, bf=fb, bg=gb, fdf=cd=dc, ce=ec, cf=fc, cg=gc, eg=ge, fg=gf >
Subgroups: 1804 in 948 conjugacy classes, 436 normal (14 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4○D4, C24, C24, C24, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C42⋊C2, C22≀C2, C4⋊D4, C4.4D4, C4⋊1D4, C23×C4, C23×C4, C22×D4, C22×D4, C22×D4, C22×Q8, C2×C4○D4, C2×C4○D4, C25, C2×C42⋊C2, C2×C22≀C2, C2×C4⋊D4, C2×C4.4D4, C2×C4⋊1D4, C22.29C24, D4×C23, C22×C4○D4, C2×C22.29C24
Quotients: C1, C2, C22, D4, C23, C2×D4, C24, C22×D4, 2+ 1+4, C25, C22.29C24, D4×C23, C2×2+ 1+4, C2×C22.29C24
(1 19)(2 20)(3 17)(4 18)(5 15)(6 16)(7 13)(8 14)(9 22)(10 23)(11 24)(12 21)(25 32)(26 29)(27 30)(28 31)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 13)(2 14)(3 15)(4 16)(5 17)(6 18)(7 19)(8 20)(9 27)(10 28)(11 25)(12 26)(21 29)(22 30)(23 31)(24 32)
(1 26)(2 25)(3 28)(4 27)(5 23)(6 22)(7 21)(8 24)(9 16)(10 15)(11 14)(12 13)(17 31)(18 30)(19 29)(20 32)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 6)(2 5)(3 8)(4 7)(9 21)(10 24)(11 23)(12 22)(13 18)(14 17)(15 20)(16 19)(25 31)(26 30)(27 29)(28 32)
(1 13)(2 14)(3 15)(4 16)(5 17)(6 18)(7 19)(8 20)(9 25)(10 26)(11 27)(12 28)(21 31)(22 32)(23 29)(24 30)
G:=sub<Sym(32)| (1,19)(2,20)(3,17)(4,18)(5,15)(6,16)(7,13)(8,14)(9,22)(10,23)(11,24)(12,21)(25,32)(26,29)(27,30)(28,31), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,27)(10,28)(11,25)(12,26)(21,29)(22,30)(23,31)(24,32), (1,26)(2,25)(3,28)(4,27)(5,23)(6,22)(7,21)(8,24)(9,16)(10,15)(11,14)(12,13)(17,31)(18,30)(19,29)(20,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,6)(2,5)(3,8)(4,7)(9,21)(10,24)(11,23)(12,22)(13,18)(14,17)(15,20)(16,19)(25,31)(26,30)(27,29)(28,32), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,25)(10,26)(11,27)(12,28)(21,31)(22,32)(23,29)(24,30)>;
G:=Group( (1,19)(2,20)(3,17)(4,18)(5,15)(6,16)(7,13)(8,14)(9,22)(10,23)(11,24)(12,21)(25,32)(26,29)(27,30)(28,31), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,27)(10,28)(11,25)(12,26)(21,29)(22,30)(23,31)(24,32), (1,26)(2,25)(3,28)(4,27)(5,23)(6,22)(7,21)(8,24)(9,16)(10,15)(11,14)(12,13)(17,31)(18,30)(19,29)(20,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,6)(2,5)(3,8)(4,7)(9,21)(10,24)(11,23)(12,22)(13,18)(14,17)(15,20)(16,19)(25,31)(26,30)(27,29)(28,32), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,25)(10,26)(11,27)(12,28)(21,31)(22,32)(23,29)(24,30) );
G=PermutationGroup([[(1,19),(2,20),(3,17),(4,18),(5,15),(6,16),(7,13),(8,14),(9,22),(10,23),(11,24),(12,21),(25,32),(26,29),(27,30),(28,31)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,13),(2,14),(3,15),(4,16),(5,17),(6,18),(7,19),(8,20),(9,27),(10,28),(11,25),(12,26),(21,29),(22,30),(23,31),(24,32)], [(1,26),(2,25),(3,28),(4,27),(5,23),(6,22),(7,21),(8,24),(9,16),(10,15),(11,14),(12,13),(17,31),(18,30),(19,29),(20,32)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,6),(2,5),(3,8),(4,7),(9,21),(10,24),(11,23),(12,22),(13,18),(14,17),(15,20),(16,19),(25,31),(26,30),(27,29),(28,32)], [(1,13),(2,14),(3,15),(4,16),(5,17),(6,18),(7,19),(8,20),(9,25),(10,26),(11,27),(12,28),(21,31),(22,32),(23,29),(24,30)]])
44 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 2L | ··· | 2W | 4A | ··· | 4H | 4I | ··· | 4T |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | 2+ 1+4 |
kernel | C2×C22.29C24 | C2×C42⋊C2 | C2×C22≀C2 | C2×C4⋊D4 | C2×C4.4D4 | C2×C4⋊1D4 | C22.29C24 | D4×C23 | C22×C4○D4 | C22×C4 | C22 |
# reps | 1 | 1 | 4 | 4 | 2 | 2 | 16 | 1 | 1 | 8 | 4 |
Matrix representation of C2×C22.29C24 ►in GL8(ℤ)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 |
-1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 |
1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 2 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 |
-1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | -1 | 1 | 1 |
0 | 0 | 0 | 0 | -1 | 0 | -2 | -1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
-1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | -1 | 1 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 |
-1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(8,Integers())| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1],[-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1],[1,0,0,0,0,0,0,0,2,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,2,0,-1,0,0,0,0,0,0,-1,0,0],[-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,-1,1,-1,0,0,0,0,2,1,-1,0,0,0,0,0,0,0,1,-2,0,0,0,0,0,0,1,-1],[1,-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,2,1,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,-1],[-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1] >;
C2×C22.29C24 in GAP, Magma, Sage, TeX
C_2\times C_2^2._{29}C_2^4
% in TeX
G:=Group("C2xC2^2.29C2^4");
// GroupNames label
G:=SmallGroup(128,2178);
// by ID
G=gap.SmallGroup(128,2178);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,2,477,232,1430,387,1123]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=f^2=g^2=1,e^2=b,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,e*d*e^-1=g*d*g=b*d=d*b,f*e*f=b*e=e*b,b*f=f*b,b*g=g*b,f*d*f=c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,e*g=g*e,f*g=g*f>;
// generators/relations